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An Optimally Portable SIMD Programming Language

Russ Tuck
Computer Science Department, Duke University, and

Computer Science Department, University of North Carolina at Chapel Hill"

Abstract Introduction
Existing programming languages for SIMD (Single- Portable high-level languages for von Neumann corn-
Instruction Multiple-Data) parallel computers make puters are major accomplishments in computer sci-
implicit architectural assumptions. These limit each ence. These languages have radically improved the
language to architectures satisfying its assumptions. quality, cost, reliability, and availability of software.
This paper presents a theoretical foundation for devel- However, the greater architectural diversity of SIMD
oping much more portable languages for SIMD com- (Single-Instruction Multiple-Data) computers has so
puters. It also describes work in progress on the design far kept them from fully benefiting from such lan-
and implementation of such a language. guages. Each existing SIMD language contains archi-

An optimally porgable programming language for a tectural assumptions which make it suitable for pro-
set of architectures is one which allows each program gramming only a certain subset of SIMD machines.
to specify the subset of those architectures on which Optimal portability is a new concept which can
it must be able to run, and which then allows the pro- O ptimc o portabe iccgram to exploit exactly those architectural features guide the development of much more portable SIMD
available on all of te tharget architectures. The feas programming languages. It is based on the recognitiontures available on an architecture are defined f be that some differences among SIMD architectures sig-those ahe architecture can implement with a constant- nificantly influence algorithm selection. These shouldthos th arhitctue cn imlemnt itha cnstnt- not be completely hidden from the programmer.
bounded number of operations. This definition en-
sures reasonable execution efficiency, and identifies ar- The programmer makes an algorithm's architec-
chitectural differences which are relevant to algorithm tural assumptions explicit by expressing the algorithm
selection. as a program for a particular set of architectures.

An optimally portable programming language for These architectural assumptions precisely define the
SIMD computers, called Porta-SIMD (porta-simm'd), program's portability. The programmer may then
is being developed to demonstrate these ideas. Based take full advantage of all architectural features com-
on C++, it currently runs on the Connection Machine mon to all members of that set, and no more. Se-
and Pixel-Planes 4. lecting a small set of very similar architectures lim-

its a program's portability, but allows it to take full
Keywords: Portable, SIMD Parallel, Programming advantage of specialized features the members share.
Language, Porta-SIMD, Taxonomy, Pixel-Planes, Selecting a large diverse set of architectures produces
Connection Machine, C++. a program that is very portable, but may not take

'This work wa supported by the Pixel-Planes Project, full advantage of some of the architectures. This se-
Henry Fuchs and John Poulton, P.l.s, and its rants: National lectable tradeoff between breadth and power provides
Science Foundation grant #MIP.601552, Defense Advanced optimal portability.
Research Projects Agency order #6090, Office of Naval Re- This is entirely consistent with Chandy and Misra's
search contract #N(014-86.K-0680; and by the GRIPtProject,
Frederick Brooks, P.., under National Institutes of Health [01881 ideas on algorithm portability. They ad-
grant #RR 02170. Access to a Connection Machine was pro. vocate developing algorithms that are progressively
vided by the Advanced Computing Research Facility at Ar- more tightly bound to particular architectures, un-
gonne National Laboratories, under gants NSF-ASC-808327 til an algorithm is specialized sufficiently to provide
and DOF-W-31-109-ENG.38. Author's phone and electronic
address: (919) 962-1755 or (919) 684-5110; tuck~cs.unc.edu or the desired performance. They provide a language-
rrtcs.duke.edu. independent notation for expressing algorithms dur-



ing development, which must be translated into a Jan- a set S of architectures is an architecture constructed
guage for a particular architecture before execution. as follows:
With an optimally portable language, this would not
have to be a different language for each target archi- 1. Let architecture u be the union of S. To each
tecture. Avoiding the necessity of learning and re- mebe An o S ad ac date t a onsta-
membering details of a different language for each ar- n on i w n sat et a consn
chitecture is a significant time and cost savings, number of its own data elements and operations.

In practice, an optimally portable language for a set 2. Take the intersection of the sets of data types
of architectures needs both a definition and a taxon- and operations of all members of S, as augmented
omy of that set. These provide a precise way to specify by the previous step, to create the intersection
the architectures on which a program must run. They architecture.
also contribute to improved understanding of the ar-
chitectures, and their algorithms and languages. Both The intersection of a set of architectures will also be
a definition and a taxonomy of SIMD architectures are called the shared architecture of the set. These defi-
given in the section "A SIMD Taxonomy for Program- nitions imply that any member of a set of equivalent
mers." architectures can simulate the operation of any other

Existing SIMD programming languages are not op- member, and the number of native operations they
timally portable. They are built on a variety of in- execute will be within a constant factor of each other.

flexible architectural assumptions, including specific A particular computer may be considered to is-

processor interconnection networks and the presence plement only a single set of equivalent architectures.
or absence of features like local addressing of mem- This set must be the set of architectures equivalent

ory. The section titled "Existing SIMD Languages" to the architecture defined by the computer's lowest-

surveys these languages. level publically documented programming interface.

I am currently working on the design and implemen- For most sequential computers, that interface is as-

tation of a new optimally portable language for SIMD sembly language. For some SIMD computers it is a

computers: Porta-SIMD (pronounced porta-simm'd). library.

Its overall structure is modeled on the proposed SIMD A program is portable across a set S of architectures

taxonomy for programmers, allowing it to present to if and only if it can be compiled and correctly executed

the programmer an appropriate programming model on the shared architecture of S. Such a program can

for any subset of SIMD architectures. It is intended to therefore be compiled and correctly executed on every

demonstrate the feasibility of designing, implement- member of S. The architecture on which a program

ing, and using optimally portable languages. The on- is intended to run is called the program's .rget ar-

going design and implementation of Porta-SIMD are chitecture. A program is said to se a data type or

discussed in the section "An Optimally Portable Lan- operation if and only if it contains a direct or indi-

guage." rect reference to a language feature that provides a
capability equivalent to that data type or operation.

A programming language L is optimally portable for

Optimal Portability a set S of architectures if and only if all of the following
are true:

Optimal portability is best defined in terms of a few L requires each program p to specify some archi-
supporting definitions. An abstract architecture is the tecture A. E S as its target architecture. (A de-
set of fundamental data types and operations provided fault target architecture may be implicitly speci-
by a computer, without regard to how the data and fled in the absence of an explicit specification.)
operations are represented. It does not include imple-
mentation details such as the the amount of memory * L does not allow p to use any data type or oper-
present in a machine, or the number of processors in ation not in AV
a parallel machine. Except where explicitly stated e L allows p to use any data type or operation in
otherwise, I will use architecture as a synonym for ab- A," -1
stract architecture.

The members of a set of architectures are equve- This definition implies that p is portable across any
lent if and only if their intersection is identical to their set S, g S such that A, is the shared architecture of
union. The saiow of a set of architectures is an archi- S1, including the maximal such set, Sp. Therefore, p
tecture containing all data types and operations con- cannot be portable across a larger set of architectures
tained in any member of the set. The intersection of • without giving up the use of one or more data types des

or
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or operations. In addition, p cannot use additional munication with this network depends heavily on the
data types or operations without adding to A,. This dynamically chosen communication pattern. A lower
would potentially reduce p's portability by removing bound for the worst case is the diameter of the net-
architectures from S.. work, which is at least the square root of the number

A few points in the definition of optimal portability of PEa. Since a SIMD architecture does not specify
deserve discussion. It is difficult, perhaps impossible, a maximum number of PEs, this is not a constant
to find a simple set of rules to accurately and impar- bound. Therefore, the two descriptions are not equiv-
tially determine the programmer-visible architecture alent, and only the first is part of a valid abstract
of every computer. Computer systens have many lay- architecture for this machine.
ers of architecture, and features are sometimes imple-
mented in the "wrong" layer conceptually to improve However, if the automatic routing software were
performance. However, identifying such features is a hidden beneath the lowest-level publically doc-
matter of judgement which is not easily reduced to umented programming interface, the architecture
simple rules. Great care has been taken in construct- would be considered by the above definitions to pro-iug the definitions above, but they are not perfect. vide communication between arbitary pairs of PEa.

It is important to construct a good test for whether

an abstract architecture can usefully simulate some
data type or operation. Any Turing-equivalent ma- There are several reasons to define a machine's ar-
chine may simulate any architecture, but not always chitecture by its lowest-level publically documented
with useful performance. The constant-bounded cri- programming interface, rather than by its hardware.
terion above for operations and data ensures reason- A programmer has no access to the hardware except
able performance and fits well with intuitive notions through this interface. Hardware documentation is
of equivalent architectures. It also makes equivalence not always publicly available; it is often less complete
transitive. (Suppose architecture A, can simulate ar- and precise than the programming interface, largely
chitecture Ay in op(A,, A,) operations, and equiva- because programming interfaces must be well docu-
lence is denoted by "=". Then Aj = Aj and Ai = Ab mented in order for important software to be devel-
implies op(A,, Aj) < op(Ai, Ai)op(Ai, A&), which im- oped. Machine builders are free to implement a single
plies A, = A5 because op(A.,Aj) and op(Aj,A&) are architecture with different hardware designs, trans-
constants.) Logarithmic and polynomial bounds do parently to the programmer. These identically pro-
not have this important property. grammed machines should be considered to have the

In some cases, a single machine may be reasonably same architecture (from a programmer's perspective).
described by two or more quite different abstract ar-
chitectures. As long as they are equivalent, they are It is difficult to define precisely which data types
equally valid descriptions. For example, a bit-serial and operations a program uses. The important fea-
SIMI) machine may be described as having operations ture of the definition of use above is that usage is de-
on bits, on multi-bit integers, or on floating-point fined with respect to the source code, not the compiled
numbers. Operations on the multi-bit data types can object code. This prevents the compiler from making
be simulated by a constant number of bit-serial op- features not available in the target architecture avail-
erations. The constant (which may be over 1000) de-
pends on the nature and size (in bits) of the simulated able to the program by generating code to simulatethem with arbitrary numbers of data elements and
data type, but does not depend on the values stored operations. (Of course, a compiler generating code
in data elements of that type. The architectures are for an architecture equivalent to A. may generate a
equivalent. This is consistent with the common prac- constant number of data elements and operations to
tice of building implementations of a single architec- simutat e data ertens of ope o
ture with varying execution speeds. simulate data tyes and operations of A,.)

Another example is a SIMD machine with a 2-
dimensional grid interconnection network which al- Prohibiting compilers from simulating data types
lows communication in parallel between pairs of adja- and operations not present in Ap ensures portability
cent PEa (Processing Elements), using its lowest-level with useful performance, not just theoretical portabil-
publically documented programing interface.. With ity. This does not restrict the function of programs,
an additional layer of software to do automatic rout- since p may simulate such data types and operations
ing, it might also be described as providing commu- itself. The implementers of L may even provide, as a
nication between arbitrary pairs of PEs. The num- convenience to programmers, a package written in L
ber of operations required to simulate arbitrary com- to do this simulation.
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A SIMD Taxonomy for Pro- If there is a SIMD architecture which does nob have

grammers this property, I do not think it is very interesting be-
cause the PEA cannot be given unique predetermined

A programming language is optimally portable only data on which to operate. That is the whole purpose
for a specific set of architectures. Therefore, any opti- of a SIMD architecture.
mally portable SIMD programming language will re- The only claimed exception to property 3, that I am
quire a definition of SIMD architectures. aware of, is an alternative set of architectures where

PEs access a global memory space through a network

Definition of SIMD Architectures of some kind (e.g., [HB84, pp. 326-327]). 1 believe
that any such architecture is equivalent to a local-

An architecture A is a SIMD architecture if and only memory architecture in which the PEs are connected
if all of the following are true: to each other by the same network that connects the

PEs to the global memory.
" A has a host computer which handles ordinary Specifically, the BSP (Burroughs Scientific Proces-

scalar computations and flow control, and which sor) [HB84, pp. 326-327,410-422] is the only non-local
broadcasts instructions, one at a time, to all PEs memory architecture I know of. It is equivalent to a
(Processing Elements). large subset of the CM (Connection Machine) archi-

" A has n > I identical PEa which all execute, si- tecture [Hil85,Thi87,TMC87J. (Both architectures are

multaneously, each instruction broadcast by the discussed briefly in a later section.) The BSP can sim-

host. ulate the CM simply by assigning a distinct portion
of global memory to each PE for private use, and ac-

" Each PE is able to evaluate basic arithmetic and ceasing memory assigned to other PEs only to simulate
logical expressions. communication. Similarly, the CM can simulate the

BSP by using its communication primitives to access
I believe every useful SIMD architecture also has the memory, treating all the private memory as a single
following properties: global memory space. Both simulations take constant

I. Each PE is able, in response to broadcast instruc- time, so the BSP's global memory and arbitrary PE
tions, to independently choose whether to ignore to memory interconnection network is equivalent to
instructions to modify its memory. (PEs execut- the CM's local memory and a subset of its commu-
ing all instructions are enabled, while those ignor- nication primitives. The only difference between the
ing instructions to modify memory are disabled, architectures is that the CM has somewhat more pow-
PEs can be considered to have an enable-bit which erful mechanisms for resolving simultaneous accesses
is I only in enabled PEs.) to a single memory location.

If any of these properties is not true of all SIMD
2. Each PE is able to compute its unique PE number architectures, then the taxonomy below is considered

0 < p < n - 1, given sufficient time. to have an additional dimension for each such prop-
erty. Because all architectures currently classified by

3. Each PE has its own private memory. this taxonomy have the same coordinates along these
Property I can be simulated with a constant num- dimensions, those coordinates will not be mentioned

ber of ordinary arithmetic and logical operations. Ar- further.
chitectures that do not have this property are there-
fore equivalent to those that do, and can be considered Taxonomy of SIMD Architectures
to have it. This property takes many different but
equivalent forms in various machines, with it being An optimally portable SIMD progranming language
possible to ignore different subsets of an instruction must recognize and handle the full diversity of SIMD
set. architectures that exist within this definition. A tax-

Property 2 certainly holds for all architectures onomy of SIMD architectures will be crucial to this
which have a connected communication graph, and task. Although many architectural differences can be
which allow any single PE to be distinguished in any almost completely hidden by a high-level language,
way. It also holds for all architectures with parallel others fundamentally influence the programmer's al-
input, since the data being read can be the PE num- gorithm selection. To be most useful for portable lan-
bers. Property 2 holds if an architecture can load into guage design, the taxonomy should exclude the former
each PE a different element of a set of distinct values, and focus on the latter. The differences that do not
by any means, since this set can be the PE numbers. influence algorithm selection can be uniformly hidden
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from the programmer by language abstraction. How- PE to Host I/O - whether the host can obtain data
ever, an optimally portable language must make the from (0) no PE, (1) only a subset of PEa, or (2)
remaining differences visible to the programmer, in any selected PE.
the form of language features which exploit the target These architectural differences define a discrete 7-
architecture.

Previous Se MI taxonomies have been constructed dimensional space. A SIMD architecture can be char-

with different goals, and consider some architectural acterized by a 7-tuple giving its location in this space.
w dferent ohic n d ovsibe tome aprogrer. All the dimensions except the first, topology, have a
features which need not be visible to a programmer, finite set of values enumerated in their descriptions
Examples include work by iwang and Brigs [HB84, above. As new SIMD architectures are developed,
chapters S-el, and a tutorial by Seit: cSeop4. Forn- it may be necessary to add new dimensions to this
SIMI)implementa tions at ad ee l prcopiae certan taxonomy to accomodate newly invented architectural
SIMD implementations at a level appropriate for y- features.
temn designers and architects, rather than prong in- Topology and communication are very closely re-
mers. An extended abstract by Jamieson [Jan87] con- lated. Without inter-PE communication, all topolo-
siders matching algorithms with all kinds of parallel gies are equivalent. However, a SIMD architecture
architectures, not just SIMD. Karp [Kar87) presents without inter-PE communication may still use a par-
a taxonomy restricted to "those aspects that affect ticular topology. The 2D topology of Pixel-Planes
coding style," but considers only MIMD (Multiple- (discussed below) is a good example. The (z, y) I-
Instruction Multiple-Data) architectures. These tax- beling and adjacency of PEs are necessary to evalu-
onomies not suited for designing an optimally portable ate bilinear expressions, and to map computed values
SIMD language. from PE to pixels.

Beginning with the most important, the architec- In both communication and local addressing, local
tural differences that can significantly influence algo- selection subsumes global selection, since it is trivial
rithm selection include: to make the same local selection at all PEs.

Topology - the labeling and adjacencies of the PEs; Communication type (3) provides local addressing
as a side effect. It would be conceptually cleaner to

Communication - whether each PE can read/write eliminate this communication option and allow it to
data to/from (0) no other PE, (1) a globally- be simulated by communication type (2) and local ad-
selected adjacent PE, (2) a globally-selected lo- dressing. This was not done because the simulation
cation in a locally-selected adjacent PE, or (3) a takes operations proportional to the maximum num-
locally.selected location in a locally-selected ad- ber of access to any one PE, and because communi-
jacent PE; cation type (3) is a single operation of the CM and

Collision Resolution - whether multiple writes to BSP. However, both these machines essentially per-
the same location under communication types (2) form the same simulation in hardware or microcode.
and (3) are resolved by (0) serializing the ac- This is an example of an operation moved down a
cesses, or (1) combining them by applying an layer in the architecture for performance reasons. It
arithmetic or logical operation; exposes a limitation of the methods used here to de-

lineate programmer-visible architectures.
Local Addressing - whether local PE' memories Global logical-or has several equivalent variants.

can be addressed (0) only by a single globally These include the similar "global logical-and", and
computed address, or (1) also by addresses com- the related special case "all enables off", which is the
puted locally at each PE; inverse of global logical-or applied to the bit which

Global Logical-Or/Multiple-Response Resolver -_ determines whether local memory is write-protected.

whether the host can determine in a constant This taxonomy has not yet been extended to include

number of operations (0) neither of the follow- two architectural features. The first is cut-through

ing, (1) if any PE has a non-zero value in a cer- routing of data between PEs. Cut-through routing

tain field of memory (global logical-or), or (2) allows some PEs to send data to non-adjacent PEs,

the identity of at least one PE having a non-zero provided the intervening PEs do not send data. The

value in a certain field of memory, if such a PE Princeton Engine (CPB*88 and the ASP (Associative

exists (multiple-response resolver); String Processor) [KL88I, both ID architectures, use
this.

Parallel 10 (Input/Output) - whether it is (0) im- The second feature is performing parallel-prefix as
possible or (1) possible for all PEs to transfer data a single operation. The CM provides this capability,
to and from a mass storage subsystem in parallel; though the microcode must simulate it in a number



of operations logarithmic in the number of PEs in- bors for communication are equivalent. Collision
volved. (This can be proven, since each PE can only resolution by serialization or combination are also
combine two values in a single operation.) This is an- equivalent for these topologies. Of the topologies
other example of an operation moveddown a layer in discussed below, I D , 2D, and CCC have a con-
the architecture for performance reasons. stant number of neighbors per PE, but Hyper-

This taxonomy of SIMD architectures specifically cube, Arbitrary Permutation, and Complete do
excludes a variety of differences which may be very not.
important to computer architects, but which need not
influence algorithm selection. Among these are word Communication type (3) effectively provides local
length, memory structure and size, special hardware addressing type (1).
for floating-point operations, and details of scalar and * Global logical-or effectively provides arbitrary PE
parallel machine instructions. These are all routinely to host 1/0 (2).
hidden by the abstractions of ordinary high-level lan-
guages, and handled by compilers. Of course, the hid- * An architecture which has parallel i/0 to a ran-
ing is sometimes imperfect, and it is possible to write dom access storage device which the host can also
non-portable programs which depend on word length, manipulate, but does not have PE to host I/O,
byte order, or other machine-specific details. How- can simulate arbitrary PE to host I/O. A second
ever, a few simple coding rules are generally sufficient architecture differing from the first only in hay.
to avoid these problems. Neither the problems nor the ing PE to host I/O and lacking parallel I/O is
solutions differ fundamentally between sequential and therefore a subset of the first.
SIMD-parallel architectures. SIMD languages shouldbe alle ieh architectur a dIffereancuages shll In each case, the result is that adjacent points in ar-be able to hide these architectural differences as well ch t tu a sp e ar rl t d by he q iv en e ah rIa- chitectural space are related by the equivalence rather
as, but not necessarily better than, sequential an- than the subset relation.
guages.

Figure I represents as a tree the space of SIMD ar-
chitectures defined by the proposed taxonomy. The Survey of SIMD Architectures
labels on the left identify the dimension of space rep- Most of the remainder of this section surveys the
resented by each level of branching. The label at each SIMD architectures appearing in figure 1. It shows
interior tree node identifies the location of the subtree how they fit within the space of the proposed tax-
rooted at that node along one dimension of architec- onomy, giving evidence that the taxonomy is reason-
tural space. Leaf nodes represent selected published ably complete. For simplicity, each architecture is de-
SIMD architectures. Subtrees containing no selected scribed as if it were the equivalent canonical archi-
architectures are not shown. The space available is tecture defined by its location in architectural space.
not sufficient for the entire set of SIMD architectures, The proofs of equivalence are generally not difficult,
so I have included as representative a variety as pos- but will not be presented here. The architectures will
sible. Additional references are always welcome, be treated in order from left to right across the tree

This taxonomy has the desirable characteristic that of figure 1. Each heading includes the coordinates of
it is easy to determine that certain architectures are the architecture it describes.
subsets of others. This is useful because programs for A tremendous variety of topologies is possible for
a particular architecture are portable to all supersets SIMD machines. In practice, though, a few simple
of that architecture. The enumerated dimensions all topologies are used by most SIMD architectures. The
obey a strict subset ordering. Therefore, one archi- simplest, ID (1-dimensional), is a property of SIMD
tecture is a subset of another if they have the same architectures. Although it will not be mentioned in
topology and if each of the remaining elements of the their descriptions, all the other topologies contain it in
first 5-tuple is no greater than the corresponding el- addition to their advertised features. A ID topology
ement of the second 5-tuple. For example, the MPP simply labels each of n PEs with a unique integer
(2D, 2, 1, 0, 1, 1, 2) is a subset of BLITZEN (2D. 2, 0 < z < n. PE z has two neighbors, z - I and z + 1.
1, 1, 1, 1, 2), but not of Pixel-Planes 4 (2D, 0, 0.0, 0, Boundary conditions can be defined so PEs 0 and n-I
0, 0). are neighbors (forming a ring), or so their missing

In a few special cases, an architecture may fail this neighbors (PEs -I and n) always provide null values
criterion and yet be a subset of another. Examples (forming a line segment). Since these architectures
include the following: are equivalent, they will not be distinguished.

a For topologies with a constant number of neigh- The most common topology is 2D, which labels each
bors per PE, local and global selection of neigh- PE with an ordered pair (r, y) such that 0 < z < X,
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Figure 1: SIMD Architectures

0 < y < Y, and n = XY. Each PEhas four or or parallel 1/O.
eight neighbors, differing by plus or minus one in one
or both dimensions. Boundary conditions can be de- Pixel-Planes 4 (2D, 0, 0, 0, 0, 0, 0)-Pixel-
fined to provide wrap-around (forming a torus), or Planes 4 [FP81,FGH85,EAF*87] is designed for high-
null boundary values (forming a rectangular sheet). peane interactiv graphis desins. It has
The architectures using all the topologies allowed by performance interactive graphics applications. It hasthee coies reequvaent sothy wllnotbedistin- a simple 2D topology. There is no communication be-
these choices we equivalent, so they will not be distin- tween PEs, but the PE coordinates (z, y) are used toguished. The remaining topologies will be discussed compute bilinear expressions of the form az+ by+c at
as necessary with the architectures using them. These each PE (for scalar floating-point values a, 6, and c).
include Cube-Connected Cycles, Arbitrary, and Com- Although there is special hardware to evaluate these
plete graphs. expressions quickly, they can be computed in constant

time without it. These expressions can be used to dis-
Oldfield/Williams/Wiseman/Brild (iD. 0, 0. play polygons and spheres very quickly. There is no
0, 2, 0, 2)-J. V. Oldfield, R. D. Williams, local addressing, global logical-or, parallel 1/O, or PE
N. E. Wiseman, and M. R. Brl propose a CAM to host 1/O. However, images can be displayed on a
(Content Addressable Memory) with sufficient pro- video monitor, with each PE providing the data for
cessing power at each row to qualify as a SIMD archi- one pixel of the image.
tecture [OWWB88]. (Simulation of arithmetic opera- Video display of data in most architectures is done
tions and the enable-bit is rather laborious, but pos- by parallel output to a frame buffer. The fact that
sible with a constant number of operations.) There is data can be seen, but not otherwise externally ac-
no communication between PEs, but the ID topology cessed due to the absence of i/O, is a minor anomaly
provides row addresses. There is no local addressing of Pixel-Planes 4. Because it cannot influence algo-



rithm selection, there is no need to recognise it in the its immediate neighbors, with local neighbor selec-
taxonomy. tin. The PEa have local addressing of their mem-

ories. Global logical-or is not provided. There is sup-

Pixel-Planes 5 (2D, 0. 0, 0, 1, 1, 0)-Pixel- port for parallel I/O, and PE to host 1/0 from any
Planes 5 (GHFS6,EAF*8?] is designed to provide PE.
greater speed and flexibility in order to interactively
display more complex and realistic images. With re- BLITZEN (2D, 2, 1, 1, 1, 1, 2)-BLITZEN
gard to the taxonomy, it differs architecturally from [BDR87,DRM8,BHS8I builds on many ideas from the
Pixel-Planes 4 only in providing global logical-or and MPP. Its architecture differs primarily in providing
parallel I/O. local addressing of PE memory. The architecture is

However, it has hardware support for biquadratic almost identical, at this level, to that of the Illiac IV,
expressions in x and V, in addition to bilinea expres- differing only in supporting global logical-or.
sions. It also has a MIMD host. Both of these differ-
ences provide significant constant-bounded speedups. BVM (CCC, 2, 1, 0, o, 1, 1)-The BVM (Boolean
In addition, multiple sets of PEs can be combined in Vector Machine) [WagS3] arranges PEs in a CCC
a single system. A program may choose to treat them (Cube-Conected Cycles) network [PV81]. Each PE
as separate machines controlled by different proceine can communicate with its choice of its three neigh-
in the host, or as a single large machine controlled by bor PEs. Only global memory addressing is provided.
a single logical process. This is similar to the parti- Global logical-or is not provided. Parallel I/O is sup-
tioning allowed by the Connection Machine. ported, and the host can read data directly from a

single distinguished PE.
NickoUs/Cole (2D, 2, 1, 0, 0, 1, 1)-P. M. Nick-
oils and T. W. Cole [NC88] present a fault-tolerant GFIX (Arbitrary Permutation, 1, 0, 1, 1, 1,
2D processor array for image synthesis. It has a 2D 2)-The GFI1 (designed to achieve 11 GFLOPS)
topology, with globally selected neighbor conmmunica- [BDW85,BDW86] can provide multiple arbitrary per-
tion. It does not provide local memory addressing or mutations for inter-PE communication. Each permu.
global logical-or. It also provides parallel I/O and al- tation is defined by a directed graph which specifies
lows the host to obtain data from certain PEa at the the PE from which each PE receives data, with exactly
edge of the PE array. one PE receiving data from each PE. A particular per-

The distinguishing feature of this machine is not mutation is globally selected for each communication
visible archit-ctually. It is a programmable intercon- operation between PEs.
nection network that allows defective PEs and net- Local addressing, global logical-or, parallel I/O, and
work connections to be configured out of the machine arbitrary PE to host I/O are all supported.
by deleting rows or columns containing the defective
hardware. BSP (Complete, 3, 0, 1, 0, 1, 2)-The BSP

(Burroughs Scientific Processor) ([1384, pp. 326-327,
MPP (2D, 2, 1, 0, 1, 1, 2)-The MPP (Massively 410-422] architecture provides a complete intercon-
Parallel Processor) [Pot5 has a 2D topology and al- nection graph, and allows each PE to determine lo-
lows each PE to communicate with a locally chosen cally with which neighbor to communicate, and which
neighbor. There is only global memory addressing. memory location to use. Since the complete graph
Global logical-or and parallel I/O are provided, and makes neighbors of every pair of PEs, this provides
the host can obtain data from any PE. completely arbitrary locally controlled inter-PE com-

munication. Collision resolution is by serialization.
DAP (2D, 2, 1, 0, 1, 1, 2)-The Active Mem- Local addressing, parallel I/0, and arbitrary PE to
ory Technology DAP (Distributed Array Processor) host i/O are all supported. Global logical-or is not.
[PHM88] - formerly the ICL DAP - architecture As discussed above, although the BSP's memory is
appears identical to that of the MPP, at the level un- physically global, its architecture is fully equivalent to
der discussion. (However. I have not been able to the description just given.
verify support for global logical-or.)

CM (Complete, 3, 1, 1, 1, 1, 2)-The Think-
Ulliae IV (2D, 2, 1, 1, 0, 1, 2)-The Illiac IV ing Machines CM (Connection Machine) [Hi185,Thi87,
[Hor82J is an early SIMI architecture. Its 2D topol- TMC87] architecture provides a complete intercon-
ogy provides communication between each PE and nection graph, and allows each PE to determine lo-
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caliy with which neighbor to communicate, and which Existing SIMD Languages
memory location to use. Since the complete graph
makes neighbors of every pair of PEa, this provides The research reported in this paper is primarily con-
completely arbitrary locally controlled inter-PE corn- cerned with procedural languages, with a level of ab-
munication. Collision resolution can be by serializa- straction similar to C. C++, Pascal, or Fortran. Lan-
tion or combination. guages of this type both allow and require the pro-

Local addressing, global logical-or, parallel I/0, and grammer to express an algorithm unambiguously. Ex-

arbitrary PE to host 1/0 are al1 supported. cept for eliminating obviously redundant operations

There is a discrepancy between the CM's archi- arising from the way an operation is expressed, the
teure wich prvidresacoleten gah c ecig compiler for such a language is not involved in algo-tecture, which provides a complete graph connecting rim selection.

PE, and its hardware, which provides a hypercube rt netiong

(aso known an a binary a-cube). This is a result of Some other families of languages allow the program-

its system software and the definitions given earlier i mer to exprms the computation in a es algorthmic
form, leaving the language implementation more lati-

this paper. As previously discussed, those definitions tude in choosing an exact algorithm. Some claim that
require a machine's architecture to be equivalent the relative algorithm independence of the program
the lowest-level pubcally documeated programming allows greater portability among diverse parallel ar-
interface. For theiCM, that interface is currently Paris chitectures. This is most often claimed with regard
(Parallel Instruction Set) yMc87. Paris'soperations to modest parallelism on MIMD (multiple-instruction
provide the communication system described above, multiple-data) architectures. However, the way the
but they are currently implemented by a physical by- problem is stated by the programmer can have a per-
percube with routing hardware. Paris operations can hp. subtle but nevertheless profound effect on the

take time proportional to the number of PEa, so the agoritm uta tels po myfopin on the
archtecureandharwarearenotequvalnt.algorithm ultimately used. In my opinion, this effect

architecture and hardware are not equivalent, often ties such program to a particular architecture

as effectively as a procedural program expressing the
same algorithm. I am not aware of any work on the

Evaluating The Taxonomy use of non-procedural languages to programm SIMD
architectures. Non-procedural languages will not be

It is probably not possible to prove that a taxonomy discussed further.
of SIM D architectures is complete, in the sense of ad-
equately classifying all possible architectures that will Survey of SIMD Languages
ever be imagined. A more reasonable test of such a
taxonomy is twofold: A careful search of the literature has found no SIMD

programming languages satisfying the definition of op-
* Does it adequately classify each SIMD architec- timal portability. Most existing languages for SIMD

ture in the literature? computers include implicit architectural assumptions.
These limit them to some subset of the architectural
space defined in the previous section. Some languages

" Does it adequately classify every SIMD archi- are not portable at all. To my knowledge, only one
tecture which could be formed by taking differ- language, Fortran 8x. has been implemented on more
ent combinations of features from SIM D architec- than one SIMD machine. However, none is a com-
tures in the literature? plete implementation. and it is not clear how similar

the subsets are. In the brief survey of SIMD languages
The previous paragraphs have begun the work of below, languages other than Fortran 8x are grouped
showing that the proposed taxonomy satisfies the first by machines. Very low-level languages are not con-
of these criteria. sidered, leaving no languages to discuss for some ma-

The nature of the proposed taxonomy makes the chines.

second criterion trivial to establish, once the first
has been established. The taxonomy defines a multi- Illiae IV Languages-Three main languages were
dimensional orthogonal space without holes, with a developed for the Illiac IV: GLYPNIR (Algol-like).
one-to-one and onto relation between dimensions and CFD (Fortran-based). and IVTRAN (Fortran-based).
architectural features. This ensures that any combi- [Hor82] All require the programmer to use and un-
nation of features corresponds to a single defined point derstand low-level hardware features and limitations.
in the architectural space. They are not true high-level languages. A more
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portable Pacal-baed lan gua called Actus [PerTh] that support them efficienty. They include vector-
was also developed. Actus is limited by its assump- valued array subscripts, which require arbitrary com-
tion of 2D grid communication. munication. Still, Fortran Sx requires communication

and uses 2D grid communication heavily, so it cannot

MPP Language--The MPP's implementation of be implemented on all SIMD architectures.

Parallel Pascal also fails to insulate programmers from
hardware details, contrary to the language definition. Existing Languages Fail
Even as defined, Parallel Pascal is suitable only for ar-
chitectures with a 2-dimensional rectangular inter-PE Each of these languages contains embedded assump-

communication network. [POt85 tions about the architecture or architectures on which
program will run, violating the first part of the def-

CM Languages-Likewise, CO and Connection Ma- inition of optimal portability. The discussion of each

chine Lisp, two admirably well-designed high-level language commented on these assumptions. Every

languages for the CM, assume the presence of the language discussed allowed the use of one or more fea.

CM's powerful, expensive, and almost unique support tures not present in all architectures, and most failed
of arbitrarule-pensie, c ndom m tunin. spot to allow the use of some feature present in some archi-
of arbitrary inter.PE communication. (Thi7,R.S87, tecture. Therefore, they all failed to satisfy the secondSH186] or third part of the definition of optimal portability.

BVM Language-BVL-0 (Boolean Vector Lan-
guage 0) [TMW8S,Tuc87] is a C-like language for the An Optimally Portable Lan-
BVM. It was designed to be the only language for
the BVM, so it includes some very low-level machine- guage
specific features. It assumes the presence of a CCC A programming model is a complete description of
network, and does not provide for features not present the visible features and behavior of a computer sys-
in the BVM, like local addressing. Although it could tem, as seen by a program. One reason existing SIMD
be adapted for use on other architectures with a con- languages are not optimally portable is each one pro-
stant number of adjacent PEs, programs written to lnues e not oimall p ora l s ecn p
use the BVM's CCC network would have to be rewrit- vides only a single programming model, reflecting a
ten. fixed set of architectural features and assumptions.

The second programming model provided by Fortran
8x's "removed extensions is a small step away from

BSP Language-The BSP Fortran Vectorizer this problem, but Fortran $x still embodies many ar-
[IB84, pp. 417-422] combines some automatic vector- chitectural assumptions.
ization of ordinary Fortran with some vector-oriented An optimally portable SIMD language must sup-
language extensions. Some of these extensions assume port a family of programming models corresponding
the presence of the BSP's arbitrary communication. to the architectures defined by a taxonomy like the

one proposed above. Each model is specified by the
Fortran Sx-A language consisting of Fortran 77 coordinates of its point in architectural space. Thus,
with some VAX extensions and some proposed For- each model embodies the architectural requirements
tran 8x array extensions and a few machine-specific of the algorithms expressed in that model.
features was proposed in 1984 [MCA84], but not im- Porta-SIMD is a new language which will provide
plemented {AKLS88]. More recently, a subset of For- these programming models. Its design and prototype
tran 77, with proposed Fortran 8x array extensions implementation are being carried out to demonstrate
(including some "removed extensions"), has been im- the feasibility and power of optimally portable SIMD
plemented for the CM [AKLS88]. FORTRAN-PLUS languages. It is not intended to be the only or ulti-
for the DAP 500 is an implementation of Fortran 77, mate such language, but to stimulate the development
minus I/O facilities, plus some proposed Fortran 8x and use of optimally portable languages. For this rea-
array extensions [PHM88,AMT87]. It is not yet clear son, some compromises have been made in aesthetic
how compatible these implementations are. details of the language, and in performance, in order

The proposed Fortran 8x standard [TCXFS71 is the to proceed in a timely manner with limited resources.
most portable language yet implemented for SIMD ar- These considerations contributed to the choice of
chitectures. Although it is not optimally portable, its C++ [Str86] as the base language for Porta-SIMD.
"removed extensions" are a step in that direction be- There was no need nor time to invent new syntax
cause they can be implemented on those architectures and semantics for the scalar and sequential sections
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of SIMD programs, and much to be gained by using
a language with which programmers were already fa- ( 0 Define prorangm.odel:
miliar. SIMD parallel datatypes and operations can 0 ( D1,000,0,,00)
be expressed as classes and overloaded operators in *il -
C++, extending the language cleanly without mod- include <simdint.2d.h>
ifying the compiler. This would not have been true
with Fortran, C, or Pascal.

Porta-SIMD defines a set of classes, one per data *. square accepts the upper left and loer
type, for each programming model, and a model for * right corners of a square. Returns e
each point in the architectural space defined by the 0 in each PE inside the square 0 in each
taxonomy proposed above. The models are derived . PR outside.
(using C++ inheritance) from the base model, which */
implements the "least common denominator" SIMD ind.int.2d square~iat x. int y2)
architecture (ID, 0, 0, 0, 0, 0, 0). C++'s coming mul- at x2, int y2)
tiple inheritance will be used to derive an arbitrary sindint2d inside(mach, 1);
model from the base model and an additional model simd.int_2d (ach 1) a
for each architectural dimension along which the arbi- sind-inti2d x(aa, 16); y(aach, 16);

trary model has features above the base model. This inside = 1;

will prevent the implementation effort from exploding x. coord_x();

combinatorially with the size of architectural space. y.coord-y(0 ;

Parallel expressions are evaluated at each active PE inside t= (x > xW);

according to the normal C++ rules. inside 6= (y > yl);

A parallel language needs parallel control struc- inside &a (x < x2);
tures, as well as parallel data types. It is sufficient inside &= (y < y2);

to extend the semantics of the if statement to al- return(inside);

low a parallel value in the test expression. An ele-
ment of this value is used by each PE to to determine
whether to execute the body of the if or the else
clause following the test. Unfortunately, C++ does {
not provide a means to extend the semantics of control displayC-square (2,6.24,57));
structures, like it does for data types. This seman-
tic extension could be accomplished by a conceptu-
ally simple Porta-SIMD to C++ pre-processor which Figure 2: Example Porta-SIMD program.
replaced parallel if statements with small blocks of
code to enable and disable PEs appropriately. Unfor-
tunately, writing such a pre-processor (or deriving one Choosing to implement Porta-SIMD primarily as
by modifying a C++ compiler) is a difficult and time- C++ classes has both welcome and unwelcome con-
consuming task in practice. For now, a few macros are sequences. The primary benefit is avoiding the need
used to express parallel if statements, instead. For to write a compiler. The amount of work this saves
example, if p is a parallel variable, cannot be overemphasized. Another benefit is that

if (p) the Porta-SIMD prototype is itself very easy to port:
a; C++ is widely available, and the prototype has been

else written in a coding style which carefully separates
b; machine-independent from machine-dependent code.

is instead written as The primary disadvantage is that the evaluation of
parallel expressions proceeds operator by operator,

IF (p) without any overview of the expression. This is be-
a; cause the code implementing each parallel operator

ELSE has no way to know anything about its place in the
b; expression. The result is that extraneous temporary

ENDIF values and redundant copies are sometimes necessary,

A more detailed language description is beyond the reducing execution efficiency. Although this would
scope of this paper. A sample program is shown in probably be unacceptable in a production-quality lan-
figure 2. guage implementation, it is acceptably small for the
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current purposes. It is certainly possible to write an Greg Turk has been a valuable sounding board for
optimizing compiler for Porta-SIMD, but this is well ideas and problems. He and Brice Tebbs were will-
beyond the scope of the current research. ing to use Porta-SIMD very early, and have given me

Initial development was done on Pixel-Planes 4, a valuable feedback. It is a privilege to be part of the
256K PE machine in regular use at UNC. The base Pixel-Planes team. I appreciate the people and facili-
model (ID. 0, 0, 0, 0, 0, 0) was ported to a 16K PE ties of the ACRF, especially Rick Stevens. who helped
CM-2 in five days, including the time required to learn me get started on their CM.
Paris. This was done in the ACRF (Advanced Com-
puting Research Facility) at Argonne National Labs.
The Pixel-Planes 4 model (2D, 0, 0, 0, 0, o, 0) is References
now running on both Pixel-Planes 4 and the CM. In-
tegers of all sizes are supported. However, floating [AKLS88] Eugene Albert, Kathleen Knobe, Joan D.
point types have been deferred while effort focuses on Lukas, and Guy L. Steele, Jr. Corn-
the central architectural and language design issues. piling Fortran 8x array features for

Other models are in various stages of development. A the Connection Machine computer sys-

port to the Pixel-Planes 5 simulator is planned for the tern. SJGPLAN Notices, 23(9):42-56,
near future. No performance tuning or detailed mea- September 1988. (Proceedings of the
surements have been attempted, but this early proto- ACM/SIGPLAN PPEALS 1988).
type obviously provides lots of room for improvement.
A few brave early users are already providing valuable [AMT87] DAP 500 Introduction to FORTRAN-and encouraging feedback. PL US Programming. Active Memory

Technology Limited, Reading, UK, 1987.

Conclusions [BDR87] Donald W. Blevins, Edward W. Davis,

and John H. Reif. Processing Element

The extraordinary architectural diversity of SIMD and Custom Chip Architectur for the

computers is too important to algorithm selection to BLITZEN Massively Parallel Processor.

completely hide from programmers. Optimal porta- September 1987.
bility is a new concept for managing this architec- [BDW85] John Beetem, Monty Denneau, and Don
tural diversity. It provides specific criteria for identi-
fying the architectural features a programmer needs Weingarten. The GFI 1 supercomputer.
to see. It allows the programmer to precisely specify International Symposium on Computer
the portability of each program. This lets the pro-
grammer judge the proper tradeoff between acheiving Architecture. pages 108-115. June 1985.
broad portability and taking full advantage of a par- [BDW86) John Beetem, Monty Denneau. and Don
ticular architecture. Existing languages usurp this de- Weingarten. GFI 1. Journal of Statisti-
cision with predetermined architectural assumptions. cal Physics, 43(5/6), June 1986.

Porta-SIMD is being implemented to demonstrate
the power and feasibility of optimally portable lan- [BH88] Donald W. Blevins and R. A. Heaton.
guages. It takes advantage of C++ classes and oper- The BLITZEN PE array chip feature set.
ator oveloading to reduce the implementation effort. In Second Symposium on the Frontiers
Although only a few programming models have been of Massively Parallel Computation. Oc-
implemented so far, Porta-SIMD is already running tober 1988.
on Pixel-Planes 4 and a CM-2. This is probably the
first language to be implemented identically on more [CM88] K. Mani Chandy and Jayadev Misra. Ar-
than one SIMD computer. chitecture independent programming. In

Although optimal portability has been applied here Third International Conferencf on Su-
to SIMD architectures, it is potentially valuable for percomputing, Vol. S, pages 345-351,
any diverse but related class of architectures. International Supercomputing Institute,

Inc., 1988.
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